Roll No. \square

B.TECH

(SEM - I) THEORY EXAMINATION 2018-19
ENGINEERING MATHEMATICS - I
Time: 3 Hours
Total Marks: 100
Noter. AttemaltSectiohfsequiancmissidgtatheahoosetitably.

SECTIOAN

1. Attemqlthuestiontsicf.
$2 \times 10=20$
a. If $u(x y)=(\sqrt{x}+\sqrt{y})^{5}$, find value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.
b. Find all symmetry of the curve $y^{2}(2 a-x)=x^{3}$.
c. If $x=r \cos \theta y=r \sin \theta$ find value of $\frac{\partial(x, y)}{\partial(r, \theta}$.
d. Find the percentage error in the area of an ellipse when an error of $+1 \%$ is made in measuring the major and minor axes.
e. Find rank of the matrix $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10\end{array}\right]$.
f. Show that the matrix $\left[\begin{array}{cc}2 & 3-4 i \\ 3+4 i & 5\end{array}\right]$ is Hermitian.
g. Change the order of integten in $\int_{0}^{\infty} \int_{x}^{\infty} f(x, y) d y d x$.
h. Use triple integral tefind volume of a sphere of unit radius.
i. Find grad φ vher φ is given by $\varphi=3 x^{2} y-y^{3} z^{2}$ at the point $(1,-2,-1)$.
j. If $\vec{r}=x \hat{i}+x \hat{j}+x \hat{k}$ find diver and $\operatorname{curl} \vec{r}$.

SECTION B

2. Attempt any three of the following:
$10 \times 3=30$
a. If $y=e^{a \sin ^{-1} x}, \operatorname{find}\left(y_{n}\right)_{0}$.
b. If $u^{3}+v^{3}+w^{3}=x+y+z, u^{2}+v^{2}+w^{2}=x^{3}+y^{3} \quad z^{3}$ and $u+v+w=x^{2}+y^{2} z^{2}$, then

$$
\text { find } \frac{\partial(u, v, w)}{\partial(x, y z)} .
$$

c. Diagonalise the matrix $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 3\end{array}\right]$.
d. Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ where R is the region in the first quadrant bounded by $x^{2}-y^{2}=a, x^{2}-y^{2}=b, 2 x y=c, 2 x y=d, 0<a<b, \otimes<d$.
e. Verify Green's theorem for $\int_{C}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where C is the boundary of the region bounded by the lines $x=0, y=0, x+y=1$.

SECTION C

3. Attempt any one part of the following:
$10 \times 1=10$
(a) Expand $\tan ^{-1} \frac{y}{x}$ in the neighbourhood of $(1,1)$ upto and inclusive of second degree terms. Hence compute $f(1.1,0.9)$ approximately.
(b) Trace the curve $r=a(1+\cos \theta)$.
4. Attempt any one part of the following:
$10 \times 1=10$
(a) In estimating the number of bricks in a pile which is measured to be ($5 m \cdot 10 m \cdot 5 m$), the count of bricks is taken as 100 bricks per m^{3}. Find the error in the cost when the tape is stretched 2% beyond its standard length. The cost of the bricks is Rs. 2000 per thousand bricks.
(b) Find the volume of largest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
5. Attempt any one part of the following:
$10 \times 1=10$
(a) Determine the values of λ and \propto such that the system $2 x-5 y+2 z=8$, $2 x+4 y+6 z=5,, x+2 y+\lambda=\propto$
(b) Verify Cayley Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$, Hence compute A^{-1}.
6. Attempt any one parto f the following:
$10 \times 1=10$
(a) Determine the Ge region bounded by the curves $x y=2,4 y=x^{2}, y=4$.
(b) Find the ©lume of the solid surmounted by the surface $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}+\left(\frac{z}{c}\right)^{2 / 3}=1$.
7. Attempt any one part of the following:
$10 \times 1=10$
(a) Show that the vector field $\vec{F}=\frac{\vec{r}}{r^{3}}$ is irrotational as well as solenoidal.
(b) Verify Stoke's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \hat{i}-2 x y \hat{j}$ taken round the rectangle bounded by the lines $x= \pm a, y=0, y=b$.
